pydisque Documentation
Release 0.1.1

ybrs

Jul 11, 2017

Contents

1 Indices and tables 5

pydisque Documentation, Release 0.1.1

Create a new Disque client by passing a list of nodes:

from pydisque.client import Client
c = Client(["127.0.0.1:7711", "127.0.0.1:7712", "127.0.0.1:7713"1])
c.connect ()

If it can’t connect to first node, it will try to connect to second, etc.., if it can’t connect to any node, it will raise a
redis.exceptions.ConnectionError as you can imagine.

Now you can add jobs:

c.add_job ("test_queue", json.dumps (["print", "hello", "world", time.time()]),
—timeout=100)

[

It will push the job “print” to the queue “test_queue” with a timeout of 100 ms, and return the id of the job if it was
received and replicated in time. If it can’t reach the node - maybe it was shutdown etc. - it will retry to connect to
another node in given node list, and then send the job. If there is no avail nodes in your node list, it will obviously
raise a ConnectionError

Then, your workers will do something like this:

while True:
jobs = c.get_job(['test_queue'])
for gqueue_name, Jjob_id, job in jobs:
job = json.loads (job)
print ">>> received job:", job
c.ack_job (job_id)

Contents:

class pydisque.client.Client (nodes=None)
Client is the Disque Client.

You can pass in a list of nodes, it will try to connect to first if it can’t then it will try to connect to second and so
forth.

Example

>>> client = Client (['localhost:7711', 'localhost:7712'7])
>>> client.connect ()

ack_job (*job_ids)
Acknowledge the execution of one or more jobs via job IDs.

ACKIJOB jobid1 jobid2 ... jobidN
Parameters job_ids - list of job_ids

add_ job (queue_name, job, timeout=200, replicate=None, delay=None, retry=None, ttl=None,
maxlen=None, async=None)
Add a job to a queue.

ADDJOB queue_name job <ms-timeout> [REPLICATE <count>] [DELAY <sec>] [RETRY <sec>]
[TTL <sec>] [MAXLEN <count>] [ASYNC]
Parameters
* queue_name - is the name of the queue, any string, basically.
* job —is a string representing the job.

¢ timeout - is the command timeout in milliseconds.

Contents 1

pydisque Documentation, Release 0.1.1

* replicate — count is the number of nodes the job should be replicated to.

* delay - sec is the number of seconds that should elapse before the job is queued by any
server.

* retry - sec period after which, if no ACK is received, the job is put again into the queue
for delivery. If RETRY is 0, the job has an at-most-once delivery semantics.

* tt1 - sec is the max job life in seconds. After this time, the job is deleted even if it was
not successfully delivered.

* maxlen — count specifies that if there are already count messages queued for the specified
queue name, the message is refused and an error reported to the client.

* async — asks the server to let the command return ASAP and replicate the job to other
nodes in the background. The job gets queued ASAP, while normally the job is put into
the queue only when the client gets a positive reply.

Returns job_id
connect ()
Connect to one of the Disque nodes.
You can get current connection with connected_node property
Returns nothing

del_job (*job_ids)
Completely delete a job from a node.

Note that this is similar to FASTACK, but limited to a single node since no DELJOB cluster bus message
is sent to other nodes.

Parameters job_ids -

dequeue (*job_ids)
Remove the job from the queue.

Parameters job_ids — list of job_ids

enqueue (*job_ids)
Queue jobs if not already queued.

Parameters job_ids —

execute_command (*args, **kwargs)
Execute a command on the connected server.

fast_ack (#ob_ids)
Perform a best effort cluster wide deletion of the specified job IDs.

FASTACK jobid1 jobid2 ... jobidN
Parameters job_ids -

get_connection ()
Return current connected_nodes connection.

Return type redis.Redis

get__job (queues, timeout=None, count=None, nohang=False, withcounters=False)
Return some number of jobs from specified queues.

GETJOB [NOHANG] [TIMEOUT <ms-timeout>] [COUNT <count>] [WITHCOUNTERS] FROM
queuel queue? ... queueN

2 Contents

pydisque Documentation, Release 0.1.1

Parameters queues — name of queues

Returns list of tuple(job_id, queue_name, job), tuple(job_id, queue_name, job, nacks, addi-
tional_deliveries) or empty list

Return type list
hello ()
Returns hello format version, this node ID, all the nodes IDs, IP addresses, ports, and priority (lower is

better, means node more available). Clients should use this as an handshake command when connecting
with a Disque node.

HELLO :returns: [<hello format version>, <this node ID>, [<all the nodes IDs, IP addresses, ports, and
priority>, ...]

info ()
Return server information.

INFO
Returns server info

jscan (cursor=0, count=None, busyloop=None, queue=None, state=None, reply=None)
Iterate all the existing jobs in the local node.

Parameters
e count — An hint about how much work to do per iteration.
* busyloop — Block and return all the elements in a busy loop.
* queue — Return only jobs in the specified queue.

* state — Must be a list - Return jobs in the specified state. Can be used multiple times for
a logic OR.

* reply — None or string {“all”, “id”} - Job reply type. Type can be all or id. Default is
to report just the job ID. If all is specified the full job state is returned like for the SHOW
command.

nack_job (*job_ids)
Acknowledge the failure of one or more jobs via job IDs.

NACK jobidl jobid2 ... jobidN
Parameters job_ids — list of job_ids

pause (queue_name, kw_in=None, kw_out=None, kw_all=None, kw_none=None, kw_state=None,

kw_bcast=None)
Pause a queue.

Unfortunately, the PAUSE keywords are mostly reserved words in Python, so I’ve been a little creative in
the function variable names. Open to suggestions to change it (canardleteer)

Parameters
* queue_name — The job queue we are modifying.
e kw_in — pause the queue in input.
* kw_out — pause the queue in output.

* kw_all - pause the queue in input and output (same as specifying both the in and out
options).

* kw_none — clear the paused state in input and output.

Contents 3

pydisque Documentation, Release 0.1.1

* kw_state — just report the current queue state.

e kw_bcast — send a PAUSE command to all the reachable nodes of the cluster to set the
same queue in the other nodes to the same state.

glen (queue_name)
Return the length of the named queue.

QLEN <gname>
Parameters queue_name — name of the queue
Returns length of the queue

gpeek (queue_name, count)
Return, without consuming from queue, count jobs.

If count is positive the specified number of jobs are returned from the oldest to the newest (in the same
best-effort FIFO order as GETJOB). If count is negative the commands changes behavior and shows the
count newest jobs, from the newest from the oldest.

QPEEK <gname> <count>
Parameters
* queue_name — name of the queue
e count —

gscan (cursor=0, count=None, busyloop=None, minlen=None, maxlen=None, importrate=None)
Iterate all the existing queues in the local node.

Parameters
e count — An hint about how much work to do per iteration.
* busyloop — Block and return all the elements in a busy loop.
* minlen — Don’t return elements with less than count jobs queued.
* maxlen — Don’t return elements with more than count jobs queued.
* importrate — Only return elements with an job import rate (from other nodes) >= rate.

gstat (queue_name, return_dict=False)
Return the status of the queue (currently unimplemented).

Future support / testing of QSTAT support in Disque
QSTAT <gname>
Return produced ... consumed ... idle ... sources [...] ctime ...

show (job_id, return_dict=False)
Describe the job.

Parameters job_id-—

working (job_id)
Signal Disque to postpone the next time it will deliver the job again.

WORKING <jobid>
Parameters job_id — name of the job still being worked on

Returns returns the number of seconds you (likely) postponed the message visiblity for other
workers

4 Contents

CHAPTER 1

Indices and tables

* genindex
* modindex

e search

pydisque Documentation, Release 0.1.1

6 Chapter 1. Indices and tables

Index

A

ack_job() (pydisque.client.Client method), 1
add_job() (pydisque.client.Client method), 1

C

Client (class in pydisque.client), 1
connect() (pydisque.client.Client method), 2

D

del_job() (pydisque.client.Client method), 2
dequeue() (pydisque.client.Client method), 2

E

enqueue() (pydisque.client.Client method), 2
execute_command() (pydisque.client.Client method), 2

F

fast_ack() (pydisque.client.Client method), 2

G

get_connection() (pydisque.client.Client method), 2
get_job() (pydisque.client.Client method), 2

H

hello() (pydisque.client.Client method), 3

info() (pydisque.client.Client method), 3

J

jscan() (pydisque.client.Client method), 3

N

nack_job() (pydisque.client.Client method), 3

P

pause() (pydisque.client.Client method), 3

Q

qlen() (pydisque.client.Client method), 4
gpeek() (pydisque.client.Client method), 4
gscan() (pydisque.client.Client method), 4
gstat() (pydisque.client.Client method), 4

S

show() (pydisque.client.Client method), 4

W

working() (pydisque.client.Client method), 4

	Indices and tables

